Humanity on average consumes 15 terawatts of energy[1]. This is a tiny amount of energy compared to what is available around us: 72 terawatts of available wind energy at ground level[2], 150 terawatts in the jet streams[3], 44.2 terawatts of geothermal energy [4], 2 terawatts of easily-exploitable wave power[5] and 174,000 terawatts of solar energy[6]. We clearly have tens of thousands of times the energy we need, the key is our ability to harness this energy. This article explores existing and emerging technologies for doing this.
Steadily increasing energy efficiency due to improved system design and increasing cultural awareness should become a significant factor in our energy usage.
The issue currently is monetary economics. The bottom line is that with the current economic framework it is still 'cheaper' to pump oil out of the ground and burn it to produce power than use other more plentiful, renewable and environmentally benign sources. These alternative energy sources are sitting right in front of us waiting to be harnessed. It may be that open-source methods can bypass the incumbent economic system to enable plentiful, environmentally-friendly power.
Much future energy generation is likely to become more decentralised. Many buildings, or group of buildings, will likely generate much of their own power on-site by incorporating solar panels into the roof, walls, pavements and even windows [7], as well as having other renewable energy generation devices such as wind turbines and geothermal systems.
Although for power requirements beyond that which can be captured locally for more energy intensive activities, there will be very large-scale renewable energy generation sites. For instance electricity to supply the entire United States or Europe could be met with photo-voltaic arrays measuring one hundred miles by one hundred miles [8]. Although this area might sound large, in a major desert, this would be a tiny fraction of the total area - for instance in the Sahara this would be less than a third of 1%. Desertec is multi-national program looking to develop this kind of large-scale solar facility and infrastructure.
We have these major sources of energy available to us, in no particular order and not including fossil fuels that we currently rely on for the majority of our energy today:
Generating energy
Solar
Because the amount of energy falling on the Earth from the Sun is ridiculously abundant, it is likely that solar power will form the bulk of our energy in a post-scarcity society, and the other sources mentioned here will supplement it, and be used in places with little sunshine. We are expected to need 30 terawatts of power by 2030 — only 0.02% of the 174,000 terawatts of solar energy that falls on Earth.
Unlike fossil fuel energy, solar technology is improving rapidly. As a result of improving technology and changing attitudes, world photovoltaic production is growing exponentially. And as production has been growing, price has been falling, with about a 20% decrease in price-per-watt for every doubling in production[9].
Solar technologies can be divided into first, second and third generation. First generation solar cells use silicon wafers to convert about 12% of the light to electricity and work only in direct sunlight. As of 2008, 85% of solar panels sold were first generation[10][11]. Second generation solar cells are similar, but the silicon wafers are much thinner, on the nanometer scale, which reduces material used, allowing lower production costs and higher manufacturing capacity. Using lenses and mirrors to concentrate the sun's light onto a smaller area, thus reducing the number of cells needed, is now commonplace. This method allows relatively expensive high-efficiency solar cells to be integrated into relatively cheap systems. The third generation of solar cells encompasses a range of technologies at various stages of development, including —
- Flexible polymer solar cells that can be integrated into paint, windows etc. for ubiquitous PV. The conversion efficiency is currently low, around 3-5%, but this is improving. Current polymer solar cells degrade over the course of a few years, but future versions will hopefully overcome this limitation.
- Dye-sensitized cells . These have relatively high conversion efficiencies.
- Multi-junction solar cells, which have extremely high conversion efficiency. There are prototypes that convert as much as 43%[12].
- Nanocrystal solar cells . Using nanoengineered crystals, it is theoretically possible to create solar panels with an efficiency of 60.3%[13]. These are so small they could even be sprayed onto surfaces. They would also work with infrared.
- Microcontinuum are working on a solar cell that could convert infrared light with up to 80% efficiency by using arrays of gold nanoantennae. Half the energy that reaches us from the sun is in the invisible infrared range of spectrum, so finding a way to convert infrared to electricity opens up staggering amounts of energy. Infrared light is emitted by the ground at night, having been absorbed from sunlight during the day. If and when this technology comes to fruition, we could see thin, flexible coatings of solar cells that generate solar power even at night. This would enable constant solar power generation despite intermittent sunlight.
- Only a fraction of the solar energy that falls on a photovoltaic cell can be converted directly to electricity. Much of the rest turns into heat. However, this heat can also be used to generate electricity, as an alternative to, or in conjunction with, photovoltaics. Solar thermal (such as power tower & [14]. SHPEGS is an open-source design for a solar thermal generator. solar updraft tower )
- stratospheric solar array
As the technology improves, solar power becomes cheaper and more efficient. By contrast, fossil fuels are stuck with a fixed efficiency, and become more expensive as accessible reserves are depleted.
As PV technology evolves it will allow ubiquitous photovoltaics —
Ubiquitous photovoltaics
Ubiquitous PV will be the ultimate in post-scarcity energy. This refers to easily-applied, durable and very cheap photovoltaic surface coatings, using inexpensive raw materials and manufacture processes, that could cover the majority of roofs, pavements, roads and other surfaces (interestingly in the US the road network has around the same area as would be required to supply the whole country with its electricity supply - see Solar Roadways for more information). This vast distributed energy gathering area has the possibility of providing all of the energy requirements of modern society. Solar cells could even be woven into clothing, allowing mobile power for phones, personal computers etc. The range of electric vehicles could be improved by integrating photovoltaics into the paint and windows and charging their batteries while not in use.
Conveniently, ubiquitous photovoltaics would mean that the greater the population concentration in an area, the greater the energy-generating surface would be.
Polymer solar cells , nanocrystals , or nanoantennae are potential enabling technologies.
Space-based solar
This picture shows the Earth and the Sun in their true proportions. Shouldn't we be able to get all our energy out of that thing? Space-based solar power in the form of a solar power satellite orbiting the Earth, would offer several advantages over Earthbound solar power. First and foremost, the fact that there is no atmosphere between the Sun and the solar panels means that each square meter of solar panel gets more than twice as much solar energy as on the sunniest spots on Earth. This energy is constant, not subject to day-and-night cycles or to weather. Solar satellites could easily meet all mankind's energy needs for the foreseeable future.
Thee are two obstacles that have held back space-based solar power so far. First, we would need to develop a more efficient means of access to space. It is too expensive to launch something as large as a solar satellite into space using modern rocket technology. Second is the issue of transmitting energy wirelessly back to Earth. This can in theory be done with microwave beams directed at a receiver on Earth, but the technology is still in the prototype phase, see Microwave transmission
Wind
Some people have expressed concern that generating significant amounts of wind energy would require massive swathes of land to be turned into wind farms. But this is not the case for several reasons:
Firstly, wind power lends itself easily to decentralization: turbines can be put on top of any building, taking up no extra space. By putting the turbines on a tall pole, they reach the faster winds available higher up. Large-scale wind farms also take up very little space as the diameter of the pole is the only bit that takes up land; the business-end of the machinery is up out of the way and the land in between wind turbines can be used for agriculture or any other purpose. Also, much useful wind power is offshore, where land use is obviously not an issue, and the turbines can be far from view.
One technology we may see in the near future is flying wind turbines that exploit the reliable, high-speed winds of the stratospheric jet-streams.
Ocean
New slow water current energy technology allows us to turn the turbulence in little eddies and ripples of water into electricity. Ideal for small-scale generation from rivers and streams.
wave, tidal, ocean currents, ocean thermal energy conversion
The waves bobbing up and down endlessly are a source of practically unlimited energy. While engineers have looked for a way to harness this energy to make electricity for decades, the first commercially viable wave farm was opened in 2008[15].
Hydro-electric
Hydroelectric power has been used for decades as a renewable source of energy. This is ultimately powered by the sun evaporating water from the oceans and depositing rains on mountains and hills, which is captured in reservoirs and fed through turbines. It is also currently used as an energy storage system by pumping water back up to the reservoir when there is surplus electricity being generated, however this is not very efficient and caused by inflexibility and slow response in current national power networks.
Some mountainous countries such as Norway have almost their entire electricity supply met by hydroelectric generation.
One downside of hydroelectric power can be that large areas of countryside become flooded behind the dam during the building of a new hydroelectric generation project, altering the local ecosystem.
Nuclear power
Nuclear fission (currently employed). Nuclear reprocessing by the Fast breeder reactor reduces the amount of waste, increases efficiency. Prospective: nuclear fusion , accelerator-driven thorium-fuelled energy amplifier , and Travelling wave reactor . 3rd and 4th generation nuclear reactors are very safe.
Question of waste disposal. 1GW of nuclear generates only a modest 20 tons of waste. So if all our energy came from nuclear fission, we'd have 300,000 tons of waste (very dense, occupying a relatively small volume). However, this waste is dangerous.
Decommissioned warheads can be used as fuel.
Geothermal
Geothermal energy is available anywhere at any time. Even if you live in a place without enough sunlight or wind or water energy to generate power, geothermal is always available.
Biomass (carbon-neutral)
biofuel (algae), compost methane, fermented crop waste, algae, sustainable wood, and clean burning of: organic waste, animal dung and rubbish
Could be integrated with carbon capturing technologies to become better than carbon-neutral
Bacteria
Certain species of bacteria (such as geobacter) deposit electrons onto electrodes placed in their environment. Much work is still being done on optimizing the systems, but microbial fuel cells already provide a cheap and very resilient form of energy. A microbial fuel cell one cubic meter in size has been made to produce 2.5kW, though this is not easily replicable. Microbial fuel cell expert Bruce Logan has said that he expects systems will produce 1-1.5kW/m3 and cost about $3000 [18].
A $40 system developed by Dr. Peter Girguis and Dr. Helen White has shown itself capable of producing 96W of power[19]. This system used inexpensive charcoal electrodes and can run for years and years without maintenance.
Derek Lovley and his team have developed a new strain of geobacter bacteria has been developed that has a power output eight times greater than previously known strains[20]. This is not factored in to the figures given above. Using biotechnology, it may be possible to produce even more productive microbes.
Microbial fuel cells can be synergized with composting toilets to create a system that disposes of human waste, fertilizes plants for food and also generates electricity. By building microbial fuel cells into water treatment facilities, we can make water treatment plants self-sustaining in terms of energy. This would be a big step towards abundant water.
Like geothermal power, microbial fuel cells could find useful application in places lacking significant sunshine, wave or wind power.
Recapturing waste energy
Just like there are untapped reserves of money in the back of your couch, there are untapped reserves of energy in the ambient surroundings. Though not normally discussed by renewable energy afficionados, the random wasted energy that is floating around us as motion and heat can be considered a form of clean, renewable energy. Devices to capture this energy can be fitted to anything from a car to a computer. Some examples —
- Stirling engines like this one convert heat to mechanical energy. They are more efficient than steam engines and more appropriate for small-scale power generation.
- Trochoidal gear engine technology can be attached to machines such as factory robots to recapture the heat they generate and turn it back into useful energy [21].
- Piezoelectric crystals are crystals that generate electricity when shaken or squeezed. They have been used to recapture kinetic energy from the air flowing around a car [22] and in the suspension systems of cars.
- Kinetic generators such as the nPower PEG generate electricity whenever they are moved. Even just keeping one in your pocket while walking provides clean energy. What if devices like this were routinely fitted to our vehicles?
- Regenerative braking is now a standard feature in electric cars. Whenever you use the brakes of your car, you are taking away its kinetic energy. This is normally wasted, but with regenerative braking, is recaptured and used later. This can provide 10% of the car's energy needs.
Storing energy
Batteries
Capacitors
Nanoengineering is enabling more and more efficient capacitors
Hydrogen
Hydrogen economy
Using energy
Persian windcatchers cool buildings without the need for electricity by trapping cool winds while at the same time allowing hot air to rise out of the building. In some conditions that can even be used to make ice.
As our technology advances, it is becoming more and more energy-efficient. According to Wikipedia's article on efficient energy use , "up to 75% of the electricity used in the U.S. today could be saved with efficiency measures that cost less than the electricity itself". When considering the energy needs of a post-scarcity world, it is important to recognize that most of the things people want to do - heat a building, wash clothes, light their homes - can be achieved with a fraction of the energy we currently use: LEDs are rapidly replacing fluorescent and incandescent bulbs as a light-source and can provide the same illumination with a quarter the energy, better-designed cars with lighter materials can greatly reduce energy consumption for transport, and for every appliance from refrigerators to dishwashers to ovens, there are design tricks that can produce the same functionality while greatly reducing energy consumption.
In many environments, the need for using energy to heat or cool buildings can be reduced to zero by use of proper insulation and architectural design.
Post-scarcity of energy will arise when we have both halves of the equation: abundant production of energy, and non-wasteful use of it.
|