Difference between revisions of "Food/Permaculture"
m (Food/Permaculture moved to Food/Agroecology: Permaculture is too narrow, and associated with a certain clique) |
|||
Line 1: | Line 1: | ||
[[Image:Permaculture_garden.jpg|right|180px]] | [[Image:Permaculture_garden.jpg|right|180px]] | ||
− | Most | + | Most food now produced in the industrialized world comes from large farms that focus on just one or two crops or animals. This kind of farming requires constant inputs: fertilizer, pesticide, water and other resources. It also prodces a constant output of pesticide-contaminated water and other waste. |
− | + | ||
− | + | By contrast, agroecology creates an interconnected system of flora and fauna that recycles its own resources. It is an multi-species ecosystem rather than a factory-style production outfit. Each species' needs of pest management, fertilization, animal feed and so on are provided by another species. The waste of one organism benefits another, thus elegantly solving the problems of waste management and nutrition in one solution. There is (theoretically at least) no waste, allowing the system to be 'permanent', able to go on for millenia without adversely affecting the local ecosystem. | |
+ | |||
+ | Schools of agroecology include permaculture, biodynamic farming, biointensive farming and the Fukuoka method. | ||
Industrial-style farming techniques deplete 6-24 kilos of soil for ever kilo of food grown <sup>[http://content.slowfood.it/upload/5232CF8A169be27587quGYAD8EDF/files/Soil_Health.pdf]</sup>. This is a perfect example of a failure to [[Survival of our species/Long-term thinking|think long-term]]; growing food in a way that diminishes the land's capacity to grow food is like killing the goose that lays the golden eggs. Permaculture (as its name suggests), focuses on the long-term fertility of the soil. Permaculture can create 20 kilos of newly fertile soil for every kilo of food grown<sup>[http://content.slowfood.it/upload/5232CF8A169be27587quGYAD8EDF/files/Soil_Health.pdf]</sup>. | Industrial-style farming techniques deplete 6-24 kilos of soil for ever kilo of food grown <sup>[http://content.slowfood.it/upload/5232CF8A169be27587quGYAD8EDF/files/Soil_Health.pdf]</sup>. This is a perfect example of a failure to [[Survival of our species/Long-term thinking|think long-term]]; growing food in a way that diminishes the land's capacity to grow food is like killing the goose that lays the golden eggs. Permaculture (as its name suggests), focuses on the long-term fertility of the soil. Permaculture can create 20 kilos of newly fertile soil for every kilo of food grown<sup>[http://content.slowfood.it/upload/5232CF8A169be27587quGYAD8EDF/files/Soil_Health.pdf]</sup>. | ||
− | + | Agroecology is not only an ecologically sound means of food-production, it is very efficient. Permaculture expert David Blume makes a [http://www.permaculture.com/node/141 convincing case for the efficiency of permaculture], writing, "In a good but somewhat sloppy design, you need about 500 square feet (46.5m<sup>2</sup>) per person maximum. In a very good design, 200 square feet (18.5m<sup>2</sup>) will do the job." John Jeavons (father of another school of permaculture called biointensive agriculture), makes more conservative claims of around 316-372 square meters <sup>[http://articles.sfgate.com/2002-04-13/home-and-garden/17541149_1_organic-gardening-farming-food-shortage] [http://www.organicconsumers.org/articles/article_3659.cfm]</sup>. | |
− | + | The 2011 UN [http://www.srfood.org/index.php/en/component/content/article/1174-report-agroecology-and-the-right-to-food report on the right to food] notes that agroecology initiatives typically double yield within ten years while reducing the need for inputs like fertilizer. It also reports that agroecology projects generally come about as a result of peer-to-peer collaborative sharing of farming knowledge. | |
A surprising trend that has emerged in recent years is urban gardening: city dwellers are starting to grow food on balconies, rooftops, roadsides, parks and any little patch of bare soil they can find. Urban gardens may be part of the food puzzle in the future (and, moreover, they serve a social and recreational function) but it will require controlled-environment agriculture for cities to produce all the food they need. | A surprising trend that has emerged in recent years is urban gardening: city dwellers are starting to grow food on balconies, rooftops, roadsides, parks and any little patch of bare soil they can find. Urban gardens may be part of the food puzzle in the future (and, moreover, they serve a social and recreational function) but it will require controlled-environment agriculture for cities to produce all the food they need. | ||
Line 15: | Line 16: | ||
Permaculture uses such techniques as soil cultivation, plant-animal symbiosis, agroforestry, water harvesting, no-till farming and integrated pest management to create a productive system in which all agricultural processes are taken care of by the dynamic interaction of the parts of the system. This reduces labour considerably, as there is no need to till fields, spray crops or irrigate. Once soil fertility has built up to a certain level, it becomes unnecessary to spread fertilizer. In theory, a productive ecosystem, once established, can run without human labour. In the same way that a factory that uses robots to do most tasks can move towards automation, so a farm can move towards automation by getting other species to do most of the work: ducks take care of pests, nitrogen-fixing plants do the work of a fertilizer and pigs cultivate the soil. | Permaculture uses such techniques as soil cultivation, plant-animal symbiosis, agroforestry, water harvesting, no-till farming and integrated pest management to create a productive system in which all agricultural processes are taken care of by the dynamic interaction of the parts of the system. This reduces labour considerably, as there is no need to till fields, spray crops or irrigate. Once soil fertility has built up to a certain level, it becomes unnecessary to spread fertilizer. In theory, a productive ecosystem, once established, can run without human labour. In the same way that a factory that uses robots to do most tasks can move towards automation, so a farm can move towards automation by getting other species to do most of the work: ducks take care of pests, nitrogen-fixing plants do the work of a fertilizer and pigs cultivate the soil. | ||
− | + | While not as automated nor as productive as the aeroponics techniques described to the left, agroecology is a highly practical and advanced methodology that can play a role in making Spaceship Earth work for everybody. In time, it may become possible to automate agroecology by using sensors to detect when plants are ready for harvest, and having robots that can pick vegetables, prune trees and so forth. | |
− | + | ||
− | While not as automated nor as productive as the aeroponics techniques described to the left, | + |
Revision as of 04:00, 24 March 2011
Most food now produced in the industrialized world comes from large farms that focus on just one or two crops or animals. This kind of farming requires constant inputs: fertilizer, pesticide, water and other resources. It also prodces a constant output of pesticide-contaminated water and other waste.
By contrast, agroecology creates an interconnected system of flora and fauna that recycles its own resources. It is an multi-species ecosystem rather than a factory-style production outfit. Each species' needs of pest management, fertilization, animal feed and so on are provided by another species. The waste of one organism benefits another, thus elegantly solving the problems of waste management and nutrition in one solution. There is (theoretically at least) no waste, allowing the system to be 'permanent', able to go on for millenia without adversely affecting the local ecosystem.
Schools of agroecology include permaculture, biodynamic farming, biointensive farming and the Fukuoka method.
Industrial-style farming techniques deplete 6-24 kilos of soil for ever kilo of food grown [1]. This is a perfect example of a failure to think long-term; growing food in a way that diminishes the land's capacity to grow food is like killing the goose that lays the golden eggs. Permaculture (as its name suggests), focuses on the long-term fertility of the soil. Permaculture can create 20 kilos of newly fertile soil for every kilo of food grown[2].
Agroecology is not only an ecologically sound means of food-production, it is very efficient. Permaculture expert David Blume makes a convincing case for the efficiency of permaculture, writing, "In a good but somewhat sloppy design, you need about 500 square feet (46.5m2) per person maximum. In a very good design, 200 square feet (18.5m2) will do the job." John Jeavons (father of another school of permaculture called biointensive agriculture), makes more conservative claims of around 316-372 square meters [3] [4].
The 2011 UN report on the right to food notes that agroecology initiatives typically double yield within ten years while reducing the need for inputs like fertilizer. It also reports that agroecology projects generally come about as a result of peer-to-peer collaborative sharing of farming knowledge.
A surprising trend that has emerged in recent years is urban gardening: city dwellers are starting to grow food on balconies, rooftops, roadsides, parks and any little patch of bare soil they can find. Urban gardens may be part of the food puzzle in the future (and, moreover, they serve a social and recreational function) but it will require controlled-environment agriculture for cities to produce all the food they need.
Permaculture uses such techniques as soil cultivation, plant-animal symbiosis, agroforestry, water harvesting, no-till farming and integrated pest management to create a productive system in which all agricultural processes are taken care of by the dynamic interaction of the parts of the system. This reduces labour considerably, as there is no need to till fields, spray crops or irrigate. Once soil fertility has built up to a certain level, it becomes unnecessary to spread fertilizer. In theory, a productive ecosystem, once established, can run without human labour. In the same way that a factory that uses robots to do most tasks can move towards automation, so a farm can move towards automation by getting other species to do most of the work: ducks take care of pests, nitrogen-fixing plants do the work of a fertilizer and pigs cultivate the soil.
While not as automated nor as productive as the aeroponics techniques described to the left, agroecology is a highly practical and advanced methodology that can play a role in making Spaceship Earth work for everybody. In time, it may become possible to automate agroecology by using sensors to detect when plants are ready for harvest, and having robots that can pick vegetables, prune trees and so forth.